Improvements of some Berezin radius inequalities

نویسندگان

چکیده

The Berezin transform $\widetilde{A}$ and the radius of an operator $A$ on reproducing kernel Hilbert space over some set $Q$ with normalized $k_{\eta}:=\dfrac{K_{\eta}}{\left\Vert K_{\eta}\right\Vert}$ are defined, respectively, by $\widetilde{A}(\eta)=\left\langle {A}k_{\eta},k_{\eta}\right\rangle$, $\eta\in Q$ $\mathrm{ber} (A):=\sup_{\eta\in Q}\left\vert \widetilde{A}{(\eta)}\right\vert$. A simple comparison these properties produces inequalities $\dfrac{1}{4}\left\Vert A^{\ast}A+AA^{\ast}\right\Vert \leq\mathrm{ber}^{2}\left( A\right) \leq\dfrac{1}{2}\left\Vert $. In this research, we investigate other that related to them. particular, for $A\in\mathcal{L}\left( \mathcal{H}\left(Q\right) \right) $ prove that$\mathrm{ber}^{2}\left( _{\mathrm{ber}}-\dfrac{1}{4}\inf_{\eta\in Q}\left(\left( \widetilde{\left\vert A\right\vert }\left( \eta\right)\right)-\left( A^{\ast}\right\vert \eta\right)\right) ^{2}.$

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some improvements of numerical radius inequalities via Specht’s ratio

We obtain some inequalities related to the powers of numerical radius inequalities of Hilbert space operators. Some results that employ the Hermite-Hadamard inequality for vectors in normed linear spaces are also obtained. We improve and generalize some inequalities with respect to Specht's ratio. Among them, we show that, if $A, Bin mathcal{B(mathcal{H})}$ satisfy in some conditions, it follow...

متن کامل

Some numerical radius inequalities with positive definite functions

 ‎Using several examples of positive definite functions‎, ‎some inequalities for the numerical radius of‎ ‎matrices are investigated‎. ‎Also‎, ‎some open problems are stated‎.

متن کامل

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

Some inequalities on the spectral radius of matrices

Let [Formula: see text] be nonnegative matrices. In this paper, some upper bounds for the spectral radius [Formula: see text] are proposed. These bounds generalize some existing results, and comparisons between these bounds are also considered.

متن کامل

Some improvements of one method for proving inequalities by computer

In the article [17] we consider only the case when n and m are non-negative integer points determined by: n ≥ 1 is the multiplicity of the root x = a, otherwise n = 0 if x = a is not the root; and m ≥ 1 is the multiplicity of the root x = b, otherwise m = 0 if x = b is not the root. In this case, if for the function f(x) at the point x = a there is an approximation of the function by Taylor pol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Constructive mathematical analysis

سال: 2022

ISSN: ['2651-2939']

DOI: https://doi.org/10.33205/cma.1110550