Improvements of some Berezin radius inequalities
نویسندگان
چکیده
The Berezin transform $\widetilde{A}$ and the radius of an operator $A$ on reproducing kernel Hilbert space over some set $Q$ with normalized $k_{\eta}:=\dfrac{K_{\eta}}{\left\Vert K_{\eta}\right\Vert}$ are defined, respectively, by $\widetilde{A}(\eta)=\left\langle {A}k_{\eta},k_{\eta}\right\rangle$, $\eta\in Q$ $\mathrm{ber} (A):=\sup_{\eta\in Q}\left\vert \widetilde{A}{(\eta)}\right\vert$. A simple comparison these properties produces inequalities $\dfrac{1}{4}\left\Vert A^{\ast}A+AA^{\ast}\right\Vert \leq\mathrm{ber}^{2}\left( A\right) \leq\dfrac{1}{2}\left\Vert $. In this research, we investigate other that related to them. particular, for $A\in\mathcal{L}\left( \mathcal{H}\left(Q\right) \right) $ prove that$\mathrm{ber}^{2}\left( _{\mathrm{ber}}-\dfrac{1}{4}\inf_{\eta\in Q}\left(\left( \widetilde{\left\vert A\right\vert }\left( \eta\right)\right)-\left( A^{\ast}\right\vert \eta\right)\right) ^{2}.$
منابع مشابه
Some improvements of numerical radius inequalities via Specht’s ratio
We obtain some inequalities related to the powers of numerical radius inequalities of Hilbert space operators. Some results that employ the Hermite-Hadamard inequality for vectors in normed linear spaces are also obtained. We improve and generalize some inequalities with respect to Specht's ratio. Among them, we show that, if $A, Bin mathcal{B(mathcal{H})}$ satisfy in some conditions, it follow...
متن کاملSome numerical radius inequalities with positive definite functions
Using several examples of positive definite functions, some inequalities for the numerical radius of matrices are investigated. Also, some open problems are stated.
متن کاملextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولSome inequalities on the spectral radius of matrices
Let [Formula: see text] be nonnegative matrices. In this paper, some upper bounds for the spectral radius [Formula: see text] are proposed. These bounds generalize some existing results, and comparisons between these bounds are also considered.
متن کاملSome improvements of one method for proving inequalities by computer
In the article [17] we consider only the case when n and m are non-negative integer points determined by: n ≥ 1 is the multiplicity of the root x = a, otherwise n = 0 if x = a is not the root; and m ≥ 1 is the multiplicity of the root x = b, otherwise m = 0 if x = b is not the root. In this case, if for the function f(x) at the point x = a there is an approximation of the function by Taylor pol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Constructive mathematical analysis
سال: 2022
ISSN: ['2651-2939']
DOI: https://doi.org/10.33205/cma.1110550